Новый офис ООО «Кентавр Безопасность»

КОМПЛЕКС СИСТЕМ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ ОФИСНЫМ ПОМЕЩЕНИЕМ

По итогам отопительного сезона 2018-2019г достигнут класс энергетической эффективности А++ (высочайший)

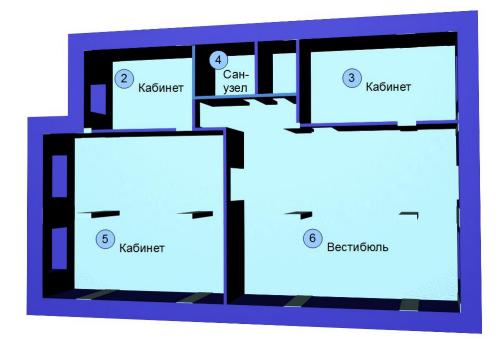
В 2018-2019г величина отклонения значения фактического удельного годового расхода тепловой энергии на отопление и вентиляцию от базового уровня -63,63%

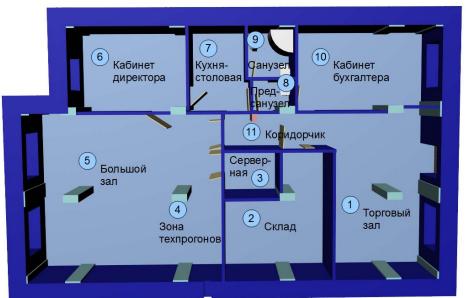
Основные цели, поставленные при разработке и реализации проекта

- Создание максимально комфортных условий для функционирования сотрудников.
- Минимизация затрат на эксплуатацию помещения за счет реализации перспективных технологий «Интеллектуального здания».
- Использование помещения офиса в качестве «шоурума» при продвижении товаров и услуг в области «Умного дома» и «Интеллектуального здания».

Характеристика исходного состояния объекта

- Адрес: г. Курск, ул. Советская, д. 12, первый этаж, помещение общественного назначения в жилом доме с поквартирным отоплением.
- Общая площадь 148,2 м².
- Исходная планировка не соответствует функционалу проектируемого офисного помещения (все фото на этом слайде).
- В помещении частично проведены работы по монтажу внутренней электропроводки по проекту застройщика.
- Окна, черновая стяжка пола, отделка стен и потолков отсутствуют.
- Монтаж систем водоснабжения, водоотведения, отопления и вентиляции не проводился.




Исходная планировка и выбранный вариант перепланировки

Исходная планировка (сверху на этом слайде) предусматривала четыре рабочих помещения (пом. 2, 3, 5, 6), санузел (пом. 4) и техническое помещение.

После перепланировки в помещении устроены (снизу на этом слайде):

- Торговый зал (пом. 1), 28,38 м²;
- Склад (пом. 2), 16,29 м²;
- Серверная (пом. 3), 3,45 м²;
- Большой зал (пом. 5), 48,31 м², в котором легкой перегородкой будет выделена «зона техпрогонов» (пом. 4);
- Кабинет директора (пом. 6), 13,86 м²;
- Кухня-столовая (пом. 7), 6,63 м²;
- Санузел (пом. 8), 3,65 м²;
- Предсанузел (пом. 9), 1,61 м²;
- Кабинет бухгалтера (пом. 10), 18,71 м².

Характеристика состояния объекта при переезде организации

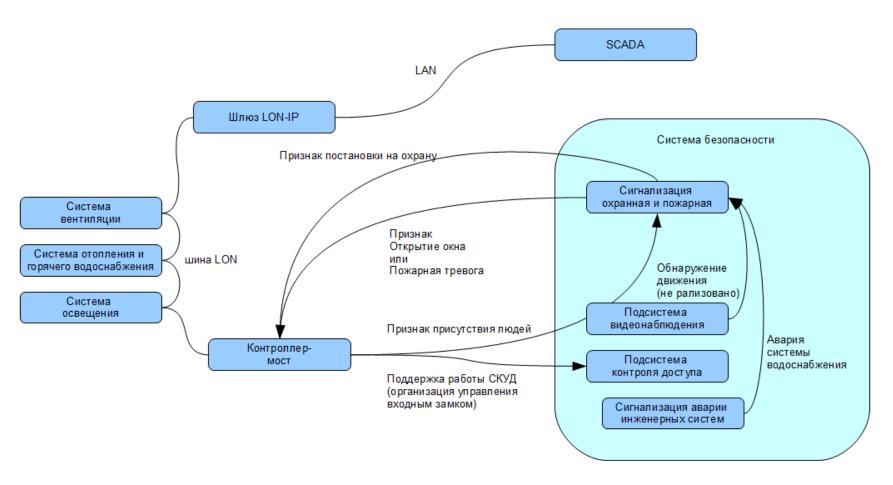
- Адрес: г. Курск, ул. Советская, д. 12, первый этаж, помещение XXIII общественного назначения в жилом доме с поквартирным отоплением.
- Общая площадь 142,0 м².
- Все фото на этом слайде соответствуют исходным помещениям на слайде 3.

ООО "Кентавр Безопасность", г.Курск, т.(4712)389020, 389021,

www.kbzp46.ru, www.kbzp.ru

Состав реализованного комплекса систем автоматического управления офисным помещением

- Система управления отоплением и горячим водоснабжением;
- Система управления вентиляцией;
- Система управления освещением;
- Система электроснабжения;
- Система безопасности (охранно-пожарная сигнализация, подсистема видеонаблюдения, сигнализация аварии инженерных систем, подсистема контроля доступа);
- Система антиобледенения крыльца;
- Система распределения мультимедиа;
- Компьютерная сеть передачи данных (LAN), сеть телефонии


Общие требования к комплексу систем автоматического управления офисным помещением, сформулированные на этапе проектирования

- 1. Все системы должны управляться по расписанию, присутствию людей и состоянию окружающей среды.
- 2. Автоматика управления различными системами должна поддерживать совместное использование датчиков и взаимную интеграцию систем.
- 3. Аппаратура автоматизации должна поддерживать перенастройку алгоритмов функционирования систем без изменения структурированной кабельной системы офисного помещения.
- 4. Технология построения комплекса систем автоматического управления должна обеспечивать их масштабирование и расширение функциональности в будущем.
- 5. В целях экономии финансовых средств в проекте не должны использоваться комнатные панели визуализации и управления.

Выбор базовой технологии построения комплекса

- Проанализировано соответствие сформулированным требованиям возможностей технологий BACnet, KNX-EIB, LON, Clipsal C-BUS;
- По показателям функциональности, доступности и совместимости оборудования для управления отоплением, кондиционированием, освещением, а также по цене (по состоянию на конец 2010 начало 2011 года) выбрана технология и шина LON;
- Выбор, в первую очередь, определился возможностью интеграции в комплекс автоматизации теплогенератора;
- Через два года после запуска комплекса в эксплуатацию LONсеть дополнена SCADA-системой для реализации функций визуализации, оперативного управления и диспетчеризации

Структурная схема интеграции автоматики управления систем отопления, вентиляции, освещения и безопасности

Оборудование Особенности реализации Результаты реализации

СИСТЕМА ОТОПЛЕНИЯ И ГОРЯЧЕГО ВОДОСНАБЖЕНИЯ

В качестве теплогенератора использован газовый водонагреватель с встроенным емкостным водонагревателем Viessmann Vitopend 222W.

В теплогенераторе применен контроллер для режима погодозависимой теплогенерации **Vitotronic 200**.

Для интегрирования теплогенератора в комплекс систем автоматического управления в контроллер установлен телекоммуникационный модуль LON фирмы Viessmann.

Функцию полноценного отопления во всех помещениях выполняет жидкостной «отопительный» теплый пол.

Для теплого пола использована труба Thermotech PE-RT>MIDI<Composite — пятислойная, с кислородным барьером и антискрипным слоем (на фото — поля теплого пола в большом зале)

В качестве распределительного теплового узла использованы:

- гидроразделитель, изготовленный из нержавеющей стали по образцу ГидроЛОГО-2И,
- а также смесительный узел Tmix-L2 и 10-контурный коллектор из нержавеющей стали фирмы Thermotech с балансировочными и термостатическими клапанами

Автоматика управления системой отопления и ГВС реализована на двух уровнях:

- 1. На уровне управления генерацией тепла;
- 2. На уровне управления потреблением тепла.

Первый уровень реализован на этапе запуска помещения в эксплуатацию (2011-2013г.).

Второй уровень реализован при разработке SCADA-системы в 2015г.

На уровне управления генерацией тепла задействованы программные средства LON-модуля теплогенератора (TГ):

- Объект Viessmann_LON-module.NODE (отвечает за генерацию календаря и текущего времени, формирование сообщений об ошибках ТГ, индикацию текущего состояния узлов ТГ, получение данных о внешней температуре воздуха);
- Объект Viessmann_LON-module.DHWC (отвечает за управление нагревом горячей воды по расписанию);
- Объект Viessmann_LON-module.HCC1 (отвечает за управление генерированием тепла по расписанию);
- Объект Viessmann_LON-module.CFDM (отвечает за текущее управление генерированием тепла по состоянию окружающей среды).

На уровне управления потреблением тепла задействованы:

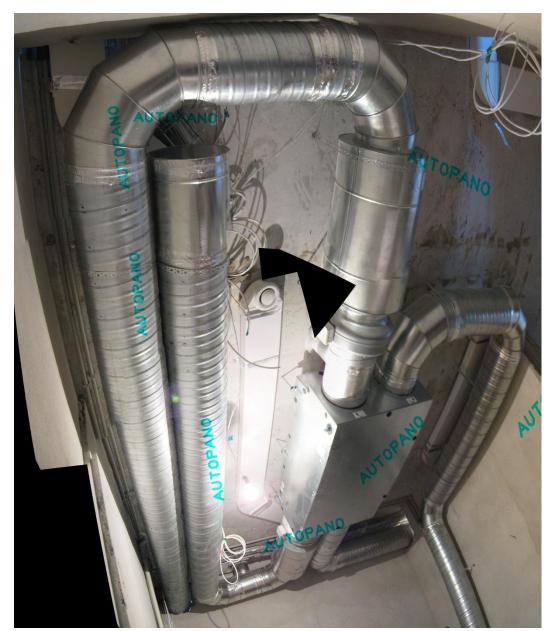
- Датчики температуры в помещениях;
- Датчики температуры теплоносителя в напорном и обратном коллекторах;
- Приводы управления термостатическими клапанами на напорном коллекторе и смесительном узле;
- Циркуляционный насос теплых полов;
- Контроллер аналоговых входов (отвечает за получение данных о температуре в помещениях);
- Контроллер цифровых выходов (отвечает за управление приводами и насосом по расписанию и текущему состоянию окружающей среды);
- SCADA-система (отвечает за детектирование ситуаций, требующих управляющих воздействий, за генерирование управляющих воздействий, за озвучивание критических ситуаций в системе отопления, а также за архивацию переменных из LON-сети, построение трендов и сохранение отчетов)

Реализация уровней управления генерацией и потреблением тепла позволила обеспечить в течение всего отопительного сезона (при температуре на улице от минус 27 до плюс 16°C):

- Температуру в помещениях к началу рабочего дня от 23 до 24°C;
- Температуру в помещениях в течение рабочего дня от 24 до 25°C;
- Температуру в помещениях в нерабочее время от 19 до 21°C;
- Автоматическое прекращение отопления при открытии окон;
- Автоматическое детектирование критических ситуаций, требующих экстренного изменения параметров исполнительных устройств LON-сети;
- Генерирование команд управления исполнительными устройствами LON-сети;
- Озвучивание критических ситуаций в системе отопления.

Оборудование Особенности реализации Результаты реализации

СИСТЕМА ВЕНТИЛЯЦИИ


Система вентиляции

Расчетное количество рабочих мест в офисном помещении — 11.

Требуемый воздухообмен — от 440 до 660 м³/ч.

В качестве центрального элемента системы вентиляции использован рекуператор RKB-10-D-P-K4 чешского производителя 2VV (на фото) со следующими основными параметрами:

- Номинальный объем расхода воздуха – 1000 м³/ч;
- Показатель
 «эффективность
 рекуперации» при расходе
 800 м³/ч 80%.

Система вентиляции

Автоматика в системе вентиляции реализует управление

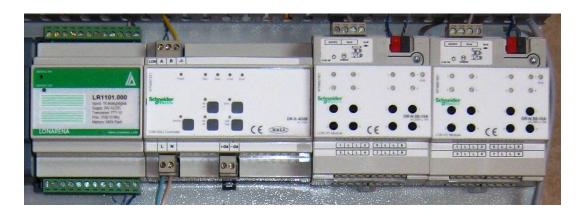
- производительностью вентиляторов по расписанию и присутствию людей;
- а также уровнем предварительного подогрева приточного воздуха

Для управления элементами системы вентиляции задействованы:

- Частотный преобразователь (отвечает за исполнение команд управления производительностью системы по расписанию и присутствию людей);
- Датчики температуры и контроллер аналоговых входов (отвечают за измерение температуры воздуха в воздуховодах и теплоносителя в воздухонагревателе);
- Контроллер аналоговых выходов и привод смесительного узла воздухонагревателя (отвечают за управление производительностью системы, а также за управление подогревом приточного воздуха в воздухонагревателе);
- Контроллер цифровых выходов (отвечает за управление системой вентиляции по расписанию, присутствию людей и текущему состоянию окружающей среды);
- Датчики присутствия из состава автоматики управления системой освещения (отвечают за получение данных о присутствии людей в помещениях);
- Контроллер-мост между LON-сетью и подсистемой охраннопожарной сигнализации (отвечает за отключение системы вентиляции при пожарной тревоге и в ряде других ситуаций);
- SCADA-система (отвечает за детектирование ситуаций, требующих управляющих воздействий, за генерирование управляющих воздействий, за озвучивание критических ситуаций в системе вентиляции, а также за архивацию переменных из LON-сети, построение трендов и сохранение отчетов).

Система вентиляции

Применение автоматики управления системой вентиляции позволило обеспечить:


- Температуру приточного воздуха в течение года от 22,8 до 24,0°С (при температуре на улице от минус 27 до плюс 27°С) и уровень углекислого газа в помещениях не выше 850 ppm;
- Плавное управление производительностью системы вентиляции по присутствию людей в диапазоне от 28,8 до 960 м³/ч. Это соответствует кратности воздухообмена в помещениях от 0,08 до 2,60 раз/ч или нормируемому удельному расходу приточного воздуха от 2,6 до 87 м³/ч/человека;
- Автоматическое включение вентиляции в рабочее время, автоматическое отключение вентиляции в нерабочее время, а также автоматическое отключение вентиляции в рабочее время при открытии окон и пожарной тревоге;
- Автоматическое управление вентиляцией серверной;
- Автоматическую активацию работы воздухонагревателя по состоянию окружающей среды и его защиту от замораживания;
- Автоматическое включение-отключение вентиляции санузла по присутствию человека
- Озвучивание критических ситуаций в системе вентиляции.

Оборудование Особенности реализации Результаты реализации

СИСТЕМА ОСВЕЩЕНИЯ

Система освещения

Система освещения построена на базе LON-контроллеров, LON-датчиков присутствия, DALI-мультисенсоров, DALI-диммеров. DALI-включателей и светодиодных источников света

Система освещения

Автоматика в системе освещения реализует управление

- включениемвыключением и интенсивностью искусственного освещения по расписанию, по присутствию людей и по интенсивности естественного света;
- включениемвыключением внешнего вечернего освещения фасада и рекламной LED-панели

Для управления элементами системы освещения задействованы:

- В торговом зале мультисенсор, датчик присутствия, DALI-диммер и DALI-включатель (отвечают за управление освещением по присутствию людей и интенсивности естественного света);
- В большом зале, кабинете директора и кабинете бухгалтера мультисенсоры и DALI-диммеры (отвечают за управление освещением по присутствию людей и интенсивности естественного света);
- В складе, зоне техпрогонов, кухне-столовой, предсанузле, санузле, коридорчике датчики присутствия (отвечают за управление освещением по присутствию людей);
- Во входной группе датчик освещенности (отвечает за управление вечерним освещением фасада по интенсивности естественного света);
- LON-контроллеры цифровых выходов и LON-DALIконтроллер (отвечают за управление всей системой освещения по расписанию).

Система освещения

Применение автоматики управления системой освещения позволило обеспечить:

- Освещенность рабочих мест (300±50) люкс в течение рабочего дня независимо от уровня естественного света;
- Автоматическое отключение искусственного освещения в комнате при отсутствии людей;
- Автоматическое отключение всего освещения в нерабочее время;
- Автоматическое управление питанием рекламной LED-панели и вечерним освещением входной группы по расписанию и уровню естественного света;
- Изменение сценариев функционирования системы освещения и ее дальнейшее развитие и масштабирование без изменения структурированной кабельной системы помещения.

Количество несущих элементов СКС Количество проложенного кабеля Количество узлов СКС

ТЕХНИЧЕСКИЕ ПОКАЗАТЕЛИ СТРУКТУРИРОВАННОЙ КАБЕЛЬНОЙ СИСТЕМЫ ОФИСНОГО ПОМЕЩЕНИЯ

Технические показатели

		Система							
Показатель	Всего	энерго- снабже- ния	осве- ще- ния	LAN	теле- фо- нии	безо- пас- ности	венти- ляции	отоп- ления	мульти- медиа
Проложено металлических коробов, м	12								
Проложено кабельных лотков, м	70								
Проложено кабельных каналов, м	76								
Проложено кабелей, м	3422	570	717	1181	75	531	101	168	79
Количество кабельных соединений	203	32	37	39	7	48	14	21	5
Количество узлов СКС при монтаже	470	76	165	60	29	79	23	22	16

Потребление и стоимость газа
Потребление и стоимость электроэнергии
Окупаемость затрат на автоматизацию

ПОКАЗАТЕЛИ ЭКОНОМИЧЕСКОГО ЭФФЕКТА ОТ АВТОМАТИЗАЦИИ СИСТЕМ ОТОПЛЕНИЯ, ВЕНТИЛЯЦИИ И ОСВЕЩЕНИЯ

Системы отопления и вентиляции.

Показатели потребления и стоимости газа за первые 7 лет эксплуатации (02.2012 г. – 04.2019 г.)

Офис ООО «Кентавр Безопасность»

- Площадь 148,2 м²;
- Объем потребленного газа в сезоне 2013г.-2014г. 1210 м³,
- Объем потребленного газа в сезоне 2014г.-2015г. 1595 м³:
- Объем потребленного газа в сезоне 2015г.-2016г. 983 м³;
- Объем потребленного газа в сезоне 2016г.-2017г. 944 м³;
 - Объем потребленного газа в сезоне 2017г.-2018г. 749 м³;
- Объем потребленного газа в сезоне 2018г.-2019г. 609 м³;
- Общий объем потребленного газа за 7 лет 8606 м³;
- Расчетный объем потребляемого газа по проекту застройщика (радиаторное отопление) для этого помещения за один отопительный сезон – 9085 м³ (4870 м³ на компенсацию теплопотерь помещения, 4215 м³ на подогрев обменного воздуха);
- Расчетная экономия стоимости газа за один отопительный сезон (при стоимости газа по состоянию на янв.2019г.) 106374 руб.

Соседний офис

- Площадь на 30% меньше;
- Объем потребленного газа в сезоне 2013г.-2014г. 3596 м³;
- Объем потребленного газа в сезоне 2014г.-2015г. 3265 м³;
- Объем потребленного газа в сезоне 2015г.-2016г. 3053 м³;
- Объем потребленного газа в сезоне 2016г.-2017г. 2746 м³;
- Объем потребленного газа в сезоне 2017г.-2018г. 2573 м³;
- Объем потребленного газа в сезоне 2018г.-2019г. 2382 м³;
- Общий объем потребленного газа за 7 лет 29564 м³.

Система освещения. Показатели потребления и стоимости электроэнергии

Показатели реализованной системы освещения

- Мощность, потребляемая светильниками реализованной системы освещения 1271,16 Вт;
- Объем электроэнергии, потребляемой системой освещения в течение года, с учетом управления по расписанию, присутствию людей и естественному освещению 1295,8 кВт*ч;
- Стоимость электроэнергии, потребляемой системой освещения в течение года (при стоимости электроэнергии по состоянию на декабрь 2018г.) 10962,15 руб.;
- Экономия стоимости электроэнергии за год 76275,31 руб.

Расчетные показатели для люминесцентного освещения без автоматики

- Мощность, потребляемая расчетным количеством (32) люминесцентных светильников и экспозиционных прожекторов (5) – 2982 Вт;
- Объем электроэнергии, потребляемой системой освещения в течение года, с учетом перерасхода из-за «забывчивости» персонала 10311,8 кВт*ч;
- Стоимость электроэнергии, потребляемой системой освещения в течение года, с учетом перерасхода из-за «забывчивости» персонала (при стоимости электроэнергии по состоянию на декабрь 2018г.) 87237,46 руб.

Общие показатели «Стоимость систем» и «Стоимость автоматизации»

	Стоимость самой системы			Стоимость автоматизации системы					
ма	Проект	Комп- лекту- ющие	Мон- таж	Всего	Проект	Комп- лекту- ющие	Мон- таж	Пуско- налад- ка	Всего
Отоп- ление	120807	517328	45000	683135	32135	21737	15647	7823	77342
Венти- ляция	96646	175941	80020	352607	44185	51890	27193	17293	140561
Осве- щение	140941	168284	109377	418602	100421	147507	58906	54585	361419

Показатели увеличения стоимости систем при автоматизации

- стоимость систем отопления и вентиляции увеличилась на 21,04%;
- стоимость системы освещения увеличилась на 86,34%. Срок окупаемости затрат на автоматизацию системы (при стоимости энергоносителей по состоянию на январь 2019г.)
- отопление и вентиляция 2,05 года;
- освещение 4,74 года.

Показатели помещения в контексте требований законодательства РФ об энергосбережении и о повышении энергетической эффективности

Показатели офиса ООО «Кентавр Безопасность»: в период 2015-16г. – класс энергетической эффективности С (повышенный), в период 2016-17г. – В (высокий), в период 2017-19г. – А+ (высочайший)

 Суммарный удельный годовой расход тепловой энергии на отопление, вентиляцию (в отопительные сезоны, в которых LON-сеть дополнена SCADA-системой, формирующей архивы и отчеты),

при заданной температуре помещений 24°C: $KBT \cdot 4/M^2$ период Γ кал/м² 2015-2016г. 0,053 61,6 2016-2017г. 0.052 60,3 2017-2018г. 0,042 48,7 2018-2019г. 0.034 39.7.

 Нормируемыи суммарный удельный расход тепловой энергии на отопление и вентиляцию за отопительный период (в отопительные сезоны, в которых LON-сеть дополнена SCADAсистемой, формирующей архивы и отчеты):

период	градсутки	Вт·ч/(м².°С·сут)
2015-2016г.	3988°C⋅cyT	15,46
2016-2017г.	/321°C⋅cvT	13.96
2017-2018г.	4672°C⋅cyт	10,42
2018-2019г.	4796°С∙сут	8,28.

 Удельный годовой расход тепловой энергии на отопление, вентиляцию (в отопительные сезоны, в которых LON-сеть дополнена SCADA-системой, формирующей архивы и отчеты):

период	Квт∙ч/м²	откл.от баз.ур.
2015-2016г.	61,6	-24,24%
2016-2017r	60,3	-33 72%
2017-2018г.	48,7	-54,95%
<u> 2018-201</u> 9г.	39,7	-63,63%

Требования законодательства (261-Ф3 от 23.11.2009, постановления Правительства, приказы министерств, постановление администрации города Курска Курской области)

• Требования по суммарному удельному годовому расходу тепловой энергии на снабжение органов местного самоуправления и муниципальных учреждений на отопление, вентиляцию (пост. администрации г.Курска от 02.08.2010г. №2601, приложение 2, строка 14), при заданной температуре помещений 20°С:

Квт∙ч/м²
116,3
104,7
104,7
104,7.

 Требования по нормируемому суммарному удельному расходу тепловой энергии на отопление и вентиляцию жилых и общественных зданий за отопительный период (приказ Минрегионразвития РФ от 17.05.2011г. №224):

год	Вт·ч/(м²·°С·сут)
2016г.	15,60
2017г.	15,60
2018г.	15,60
2019г.	15,60.

 Базовый уровень удельного годового расхода тепловой энергии на отопление, вентиляцию в многоквартирном доме (Приказ Министерства строительства и жилищнокоммунального хозяйства РФ от 6 июня 2016г. № 399/пр):

градсутки	Квт∙ч/м
3988°С.сут	83,8
4321°C⋅cyT	91,1
4672°C⋅cyT	98,8
4796°С∙сут	101.5.